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Abstract

Moyamoya disease (MMD) is a rare, progressive cerebrovascular disorder, with an unknown
etiology and pathogenesis. It is characterized by steno-occlusive changes at the terminal portion
of the internal carotid artery (ICA), which is accompanied by variable development of the basal
collaterals called moyamoya vessels. In this study, we investigate the potential for structural

T1 magnetic resonance imaging (MRI) to help characterize MMD clinically, with the help of
regionally distributed relative signal intensities (RRSIs) and volumes (RRVs). These RRSIs and
RRVs provide the ability to characterize aspects of regional brain development and represent

an extension to existing automated biomarker extraction technologies. This study included 269
MRI examinations from MMD patients and 993 MRI examinations from neurotypical controls,
with regional biomarkers compared between groups with the area under the receiver operating
characteristic curve (AUC). Results demonstrate abnormal presentation of RRSIs and RRVs in
the insula (15-20 year old cohort, left AUC: 0.74, right AUC: 0.71), and the lateral orbitofrontal
region (5-10 year old cohort, left AUC: 0.67; 15-20 year cohort, left AUC: 0.62, right AUC: 0.65).
Results indicate that RRSIs and RRVs may help in characterizing brain development, assist in
the assessment of the presentation of the brains of children with MMD, and may help overcome
standardization challenges in multi-protocol clinical MRI. Further investigation of the potential
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for RRSIs and RRVs in clinical imaging is warranted and supported through the release of open
source software.

Graphical Abstract

Moyamoya disease (MMD) is characterized by steno-occlusive changes at the terminal portion

of the internal carotid artery, resulting in a progressive cerebrovascular disorder. In this study,

we investigate the potential for regional relative volumes (RRVs) and signal intensities (RRSISs)
extracted from structural magnetic resonance imaging to characterize abnormal neurodevelopment
in MMD. Results demonstrate abnormal presentation of the insula, the orbitofrontal region, and
the caudate. Open source software is made available to facilitate other researchers in calculating
RRVs and RRSIs as part of future studies.

Introduction

Moyamoya disease (MMD) is a rare, progressive cerebrovascular disorder, with an unknown
pathogenesis. Moyamoya’s etiology, which remains unclear, is multifactorial, including both
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genetic and environmental factors (Ganesan, 2010). Genetic factors in the etiology of MMD
have been proposed for a variety of reasons, including increased prevalence in certain
ethnicities (Baba et al., 2008; Ahn et al., 2014; Miao et al., 2010; Kainth et al., 2013),
pedigree analysis (Mineharu et al., 2006; Chaudhuri et al., 1993), the genetic susceptibility
of ring finger protein 213 (RNVF213) gene (Kamada et al., 2011; Liu et al., 2011), the

fact that approximately 1 in 10 people with MMD are closely related to someone who

is also affected, and moyamoya having been identified in identical twins (Chaudhuri et

al., 1993) and siblings (Papavasiliou et al., 2007). The disease also complicates several

other genetic disorders such as Down’s syndrome, neurofibromatosis, and tuberous sclerosis
complex (Chaudhuri et al., 1993). Moyamoya was first described in 1957 when symptoms of
cerebral infarction were found with hypoplasia of the internal carotid arteries in the Japanese
population (Smith, 2015). The disease is named after the distinct appearance of cerebral
vessels in the angiograph, which resemble a puff of smoke, or “moyamoya” in Japanese.

It is characterized by steno-occlusive changes at the terminal portion of the internal carotid
artery (ICA), which is accompanied by variable development of the basal collaterals called
moyamoya vessels. Moyamoya vessels are formed to compensate for the reduced blood
supply to the brain due to the narrowing of the ICA, however they stop working overtime.
These vessels are often seen in the proximal portions of the middle and anterior cerebral
arteries (Yamada, et al., 1995). Patients with MMD show different patterns of brain damage,
and may experience recurrent multiple transient ischemic attacks, cerebral infarction, and
intracranial bleeding (Qiao et al., 2017). Some patients manifest complex clinical behaviour
including epilepsy, headaches, and a combination of motor, sensory, speech, visual, and
cognitive dysfunction (Suzuki and Kodama, 1983; Duan, 2012).

Automated analysis tools such as FreeSurfer (Fischl, 2012) have been used extensively

in the scientific literature to analyze structural MRI examinations in order to extract
region-specific biomarkers from brain examinations of healthy subjects and subjects with
various neurological conditions, such as autism, multiple sclerosis, Alzheimer’s disease, and
schizophrenia (Salat et al., 2011; Kong et al., 2012; Deppe et al., 2014; Levman et al., 2017,
2018). Automated analysis tools have also been used to detect cortical thickness changes in
adult MMD patients (Qiao et al., 2017, Lee et al., 2018).

Extensive research including pathological, genetic, and angiography studies have been
carried out to understand the etiology of, and neurological changes caused by MMD. Recent
studies have reported reduced cortical thicknesses in MMD patients (Qiao et al., 2017).

In this study, we used T1-weighted MR images to assess regional abnormalities in the
white matter (WM), grey matter (GM), the contrast of white matter to grey matter, and the
relative regional volumes of white matter to grey matter in 269 examinations from patients
with MMD by comparing them to the measurements from 993 MRI examinations from
neurotypical control participants. Since regional GM and WM are directly connected with
each other, biomarker metrics that combine measurements from two directly connected
regions may provide more specific assessments of abnormalities that are based on a
combination of irregular growth patterns in both GM and WM, particularly if the abnormal
growth patterns affect GM and WM differently. Since there is a tendency for multiple
structural T1 acquisitions to produce similar contrast between grey and white matter (these
tissues have a common appearance across T1 pulse sequences), it was hypothesized that
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regional relative signal intensities, which focus on the ratio of the white matter signal
intensity to the grey matter signal intensity, may provide a degree of standardization

for the comparison of signal intensity based biomarkers across pulse sequences. We
hypothesize that thorough assessment of a large clinical population of MRI examinations
will contribute to the body of data acquired on pediatric MMD and thus improve our
collective understanding of the clinical presentation of the condition, which has been shown
to exhibit regional abnormal growth in both the WM and GM (Kazumata et al., 2015;
Qiao et al., 2020). We also hypothesize that relative regional volumes (RRVs) and signal
intensities (RRSIs) may help better characterize the changes in the brains of patients
with MMD and may represent biomarkers with the potential to assist in the assessment
and characterization of brain development while potentially playing a role in overcoming
varying protocol standardization challenges from clinical MRI examinations.

Materials and Methods

Participants

This study involved data from Boston Children’s Hospital (BCH)’s clinical imaging
database, which was retrospectively reviewed from January 1, 2008, to February 24,

20186, after ethics approval by the Institutional Review Board at BCH. Examinations

of low quality (i.e. motion artefacts, metal artefacts from dental fixtures, and lack

of volumetric structural T1-weighted examinations) were excluded from this study.
Furthermore, examinations that were unavailable because of technical reasons were also
excluded from the study. Neurotypical control participants were identified retrospectively in
a previous study (Levman et al., 2017) as having a normal MRI examination assessment
by a BCH neuroradiologist. Participants with an indication in their medical records

of neurological problems including but not limited to autism, cerebral palsy, traumatic
brain injury, developmental delay, multiple sclerosis, tuberous sclerosis complex, stroke,
neurofibromatosis, cortical dysplasia, epilepsy, and attention deficit hyperactivity disorder,
were excluded from the neurotypical cohort of this study. To avoid anomalous growth
patterns affected by radiation treatments, patients diagnosed with any form of cancer were
also excluded from the neurotypical control group. Patients with MMD were identified

by the indication of moyamoya in their electronic patient medical record. This resulted in
993 healthy examinations and 269 MMD examinations, which were included for further
analysis. The participant’s age at the time of the examinations ranged between 0 and 38
years for the moyamoya population and between 0 and 31 years for the control group.
The sex demographic and age distribution of the included participants is provided in the
histogram in Figure 1.

MRI Data Acquisition and Preprocessing

This study involved the use of T1-weighted structural volumetric examinations obtained
from patients imaged with 3 Tesla MRI scanners (Skyra, Siemens Medical Systems,
Erlangen, Germany) at BCH. The retrospective nature of this study led to variability

in the pulse sequences used to attain these T1-weighted structural volumetric images,
which included numerous MPRAGE acquisitions, some traditional T1-weighted structural
sequences, and volumetric spoiled gradient recalled sequences. There was variation in
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spatial resolution, ranging from 0.2 to 1.4 mm. Examinations were excluded if patient
motion artifacts were observed based on manual visual inspection. FreeSurfer’s recon-all
command (Fischl, 2012) was used to process the T1-weighted structural examinations,
aligning each image to the available atlases. The following atlases were further considered
for the extraction of volumetric and signal intensity (SI) measurements for the white and
grey matter regions from each image: lh.aparc, rh.aparc, Ih.w-g.pct, rh.w-g.pct, wmparc, and
aseg. Thus, only the volumetric and mean signal intensity (SI) measurements were processed
and analysed. The resultant data consisted of 36 white matter and 36 grey matter regions

of interest in each hemisphere and one total brain WM and GM volume measurement.

A description of all the regions of interest (ROI) investigated is summarized in Table 1.
Regional relative signal intensity (RRSIs) and volumetric (RRVS) ratios were computed such
that the extracted white matter measurement from each sub-region of interest was divided by
the corresponding grey matter measurement for that same sub-region. This yielded a total of
143 ratios out of which 71 were extracted from the left hemisphere, 71 were extracted from
the right hemisphere, and 1 ratio measurement represented the total white matter volume

to total grey matter volume ratio calculated across the entire brain. It should also be noted
that measurements for ROIs /h/rhCorticalWhiteMatter, Ih/rhCortex, CorticalWhiteMatter,
and Cortex only included volumetric information. Software that computes these regionally
relative biomarkers from FreeSurfer version 6.0 output has been made available publicly to
support future analyses (ljner, 2021), and was implemented in the computer programming
language python.

Statistical Analysis

The distribution of each ratio measurement from the healthy population was compared

to the MMD population to help characterize regional abnormalities and differences in
growth trajectories. Statistical analysis was performed to analyze the group-wise differences
observable between the MMD population and neurotypical controls for the 143 ratios
generated. This consisted of ratios of volumetric measurements, and signal intensity ratios
from 993 exams from healthy subjects (controls) and 269 exams from subjects with MMD.
Age bins of 5 years were used to divide participants into age groups of 0-5 years, 5-10
years, 10-15 years, and 15-20 years, representing early childhood, late childhood, early
adolescence, and late adolescence, respectively. Our data for control participants consisted
of only 27 subjects above the age of 20, which were ignored for the analysis in this study
because of the small sample size, however, scatter plots include all age ranges for ease of
visual comparison.

In order to test for group-wise differences between the FreeSurfer derived ratio
measurements included in this analysis, a receiver operating characteristic curve (ROC)
analysis was performed (Youngstrom, 2014). This produces the area under the ROC curve
(AUC), a statistic which indicates higher group-wise separation as the AUC approaches 1.
Cohen’s d'statistic was also computed for all ratios, which indicates a high degree of overlap
(very similar distributions) between the two groups (MMD and Healthy) with a value

close to 0 and positive/negative values indicate increased/decreased observed measurements
in the MMD group. A standardized #test (Student, 1908) was performed on each ratio
measurement for the two groups to obtain a p-value. A Bonferroni corrected statistical
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significance threshold was used to compensate for multiple statistical testing. The total
number of ratio measurements compared for each age group was 143, yielding a threshold
for statistical significance of p < 0.05/143 = 3.49e™. The ratio measurements were sorted in
terms of diagnostic potential (in decreasing AUC order) and the leading measurements were
visually assessed. All statistical analyses were performed with Matlab R2019a (Natick, MA,
USA).

Various regions of the brain demonstrate Bonferroni corrected statistically significant
differences in white matter to grey matter ratios of volumetric measurements between
patients with MMD and controls (Table 3). There are also a few regions that exhibit
differences in the ratio of the mean signal intensities from the white and grey matter. Table 3
is sorted in decreasing order of the maximum AUC. The AUCs with corresponding p values
not less than the determined Bonferroni corrected statistical threshold were not considered
in this analysis. Table 3 also contains the d'statistic value for all the age groups under each
region. Of the 72 regions analyzed, 11 demonstrated group wise differences.

Differences in ratios of volumetric measurements is the highest in the insular region for the
15-20 year age group. Overall, the regions showing greatest differences in the ratios between
the volumetric measurements are present on the lateral surface of the brain and show
increased separation between the two groups at a higher age. The regions just above the
corpus callosum on the medial surface of the brain, namely the posterior cingulate, caudal
anterior cingulate, and isthmus cingulate demonstrated the greatest mean signal intensity
(SI) ratio separation. The AUC values of the WM and GM measurements considered
individually were also calculated and compared to the AUC obtained by computing their
ratios (Table 4), for ease of assessment of the apparent utility of the proposed ratios (RRSIs
and RRVs) as biomarkers relevant to MMD. Overall, there is often an increase in the AUC
by relying on the RRSI and RRV ratios compared to the raw WM and GM measurements.

The ratio measurements for the leading AUC values were illustrated on scatterplots for
visual assessment. The blue circles represent the computed ratios for neurotypical control
subjects and the red circles represent the ratio for MMD patients. A rolling average was
generated for the plots to visualize the difference in growth trends between the two groups.
Figure 2 illustrates the scatter plots for the leading four regions from Table 3. The plots were
generated for both hemispheres, however only the hemisphere with greater AUC have been
included below due to relatively small differences between the two sides.

Discussion

In this study, we investigated the potential of regionally distributed relative volumes and
regionally distributed relative signal intensities in assisting in characterizing MMD. This
analytic approach helped identify a variety of brain regions exhibiting abnormal presentation
in terms of the ratio of regional white matter to grey matter volumes (such as the insula,

the lateral orbitofrontal region, etc.), as well as abnormal presentation of the ratio of
regional white matter to grey matter signal intensities (such as the posterior cingulate, the
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caudal anterior cingulate, etc.). Abnormal presentation of the insula confirms previously
reported findings of insular abnormalities observed from functional MRI (fMRI) (Kazumata
et al., 2017). Abnormal presentation of the lateral orbitofrontal region is supportive of
previously reported findings identifying unique characteristics of the temporo-orbito frontal
leptomeningeal network in pediatric MMD (Baltsavias et al., 2015). Abnormalities of the
anterior cingulate and the insula identified in our study are in agreement with fMRI findings
of reduced connectivity between the insula and the anterior cingulate (Kazumata et al.,
2017). The agreements found between our primary findings and those in the literature
potentially imply that RRSIs and RRVs may have utility in characterizing MMD, and may
help standardize S| based analyses across pulse sequences.

It is unclear why the presentation of moyamoya disease differs by onset age. MMD exhibits
a bimodal occurrence pattern, with common age of onset at both 5 and 40 years old

(Baba et al., 2008; Miao et al., 2010; Ahn et al., 2014). In pediatric MMD, ischemic
symptoms, seizures, and involuntary movements are common (Kim et al., 2010), while
intracranial hemorrhage was observed in half of adults with MMD (Kuroda et al., 2008). A
previous neuroimaging study on adult MMD demonstrated abnormal cortical thickness in
the posterior cingulate, insula, precentral gyri, and postcentral gyri (Qiang et al., 2017). An
additional previous neuroimaging study on pediatric MMD demonstrated abnormal cortical
thickness in the insula, postcentral, precuneus and cingulate regions (Tompkins et al.,
2021). We observed regional abnormal relative cortical volumes in the posterior cingulate,
insula, pericalcarine gyri, transverse temporal, and superior temporal gyri. Although we
could not compare pediatric MMD with adult onset MMD directly, there appears to be
dominance of temporo-occipital lobe abnormalities in pediatric MMD and fronto-parietal
lobe abnormalities in adult MMD, as well as insular and posterior cingulate abnormalities
in both. A more detailed investigation would be required to reveal the correlation between
distributions of abnormal cortical regions and cognitive functions.

Limitations of the study include the fact that traditional signal intensity based biomarkers
(regional average signal intensity, etc.) extracted by publicly available software (Fischl,
2012) are heavily dependent on the pulse sequence selected, so observations of group-wise
differences presents an extra analytic challenge. Since there is a tendency for multiple
structural T1 acquisitions to produce similar contrast between grey and white matter (these
tissues have a common appearance across T1 pulse sequences), it was hypothesized that
regional relative signal intensities, which focus on the ratio of the white matter signal
intensity to the grey matter signal intensity, may provide a degree of standardization for the
comparison of signal intensity based biomarkers across pulse sequences. Future work will
investigate the potential of additional signal intensity (SI) measurements included as part of
this analysis, such as the regional minimum, maximum, range and standard deviation of Sls.
Since it is known that variable MRI pulse sequences contribute to variable assessments of
brain volume estimation (Haller et al., 2016), future work will investigate the distributional
and sample size requirements in order to observe known effects on multi-protocol clinical
MRI datasets. Thus, future work will investigate the distribution of regional SI biomarkers
across large datasets with a variety of different pulse sequences all being well represented
in the dataset, a task that was not possible in the clinical MRI dataset used in this study.

It should be noted, however, that previous work comparing this same neurotypical cohort
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(Levman et al., 2017) to pathological populations, has been relied upon to produce study
findings that have been independently confirmed on public datasets in autism (Levman et
al., 2018, 2019a, 2021) and have major findings that match those in literature studies in
Down Syndrome (Levman et al., 2019b; McCann et al., 2021). These types of validation are
not possible in moyamoya disease at this time, but we are hopeful that our study findings
will be reproducible despite the variable MRI pulse sequences employed. An additional
limitation of this study was that it was done retrospectively with limited additional clinical
and comorbid information for each patient, thus the potential impact of comorbidities

such as brain lesions, infarction, atrophy or hemorrhage is unknown. Thus, future work
will involve investigation of moyamoya patients prospectively, inclusive of detailed patient
interviews in the context of a large patient population, which was not possible in this study
due to limitations in the amount of information available in the electronic patient medical
records. Future work will also investigate the potential for normalizing regional biomarkers
by baseline regions not typically affected in moyamoya disease, such as the cerebellum.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Age distribution of all participants examined. Left: 993 healthy participants (593 females,
395 males). Right: 269 MMD patients (112 females, 157 males)
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