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Abstract: Proper brain development requires the precise coordination and orchestration of various
molecular and cellular processes and dysregulation of these processes can lead to neurological dis-
eases. In the past decades, post-transcriptional regulation of gene expression has been shown to
contribute to various aspects of brain development and function in the central nervous system. Mi-
croRNAs (miRNAs), short non-coding RNAs, are emerging as crucial players in post-transcriptional
gene regulation in a variety of tissues, such as the nervous system. In recent years, miRNAs have
been implicated in multiple aspects of brain development, including neurogenesis, migration, axon
and dendrite formation, and synaptogenesis. Moreover, altered expression and dysregulation of
miRNAs have been linked to neurodevelopmental and psychiatric disorders. Magnetic resonance
imaging (MRI) is a powerful imaging technology to obtain high-quality, detailed structural and
functional information from the brains of human and animal models in a non-invasive manner.
Because the spatial expression patterns of miRNAs in the brain, unlike those of DNA and RNA,
remain largely unknown, a whole-brain imaging approach using MRI may be useful in revealing
biological and pathological information about the brain affected by miRNAs. In this review, we
highlight recent advancements in the research of miRNA-mediated modulation of neuronal processes
that are important for brain development and their involvement in disease pathogenesis. Also, we
overview each MRI technique, and its technological considerations, and discuss the applications of
MRI techniques in miRNA research. This review aims to link miRNA biological study with MRI
analytical technology and deepen our understanding of how miRNAs impact brain development
and pathology of neurological diseases.

Keywords: miRNAs; gene expression; brain development; migration; neuronal development; neu-
rodevelopmental disorder; magnetic resonance imaging

1. Introduction

Properly formed and maintained neuronal morphology is critical for normal brain func-
tion [1]. Neuronal size and shape establish functional neuronal circuitry and connectivity.
Various proteins/factors have been implicated in contributing to neuronal morphogenesis,
including transcription factors, cytoskeletal elements, and components of various signaling
pathways, however recently microRNAs (miRNAs) have also been considered important
factors involved in the regulation of neuronal morphogenesis.

miRNAs are a new type of small non-coding RNA consisting of 19–24 nucleotides.
miRNAs bind to the 3′ untranslated region (3′ UTR) of target messenger RNA (mRNA) and
act as post-transcriptional regulators of gene expression [2,3]. The miRNA gene is primarily
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transcribed by RNA polymerase II to become primary-miRNA (pri-miRNA). It is then
processed by the RNase III enzyme Drosha in the nucleus to produce precursor-miRNA
(pre-miRNA). Pre-miRNAs migrate to the cytoplasm in an exportin-5-dependent manner
and are further processed by Dicer which interacts with a double-stranded RNA-binding
domain (dsRBD) protein, TAR RNA-binding protein (TRBP) into mature microRNAs.
Mature miRNAs are subsequently incorporated into an effector complex called RNA-
induced silencing complex (RISC), a ribonucleoprotein complex composed of argonaute
(Ago) proteins, and mature miRNAs ultimately negatively regulate gene expression by
inhibiting translation or promoting degradation of target mRNA [4] (Figure 1).
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Figure 1. Biogenesis of microRNAs (miRNAs). The miRNA gene is primary transcribed by RNA
polymerase II to become primary-miRNA (pri-miRNA). It is then processed by the RNase III enzyme
Drosha in the nucleus to produce precursor-miRNA (pre-miRNA). Pre-miRNAs migrate to the
cytoplasm in an exportin-5-dependent manner and are further processed by Dicer which interacts
with a double-stranded RNA-binding domain (dsRBD) protein, TAR RNA-binding protein (TRBP)
into mature microRNAs. Mature miRNAs are subsequently incorporated into an effector complex
called RNA-induced silencing complex (RISC), a ribonucleoprotein complex composed of argonaute
(Ago) proteins, and mature miRNAs ultimately negatively regulate gene expression by inhibiting
translation or promoting degradation of target mRNA.

miRNAs have been reported to control various biological processes including apop-
tosis, growth, differentiation, and cell proliferation [5–8]. Several lines of evidence have
revealed the crucial roles of miRNAs in the modulation of differentiation of neural cells
and brain development [9–11].
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Evaluating the brain morphology of patients and model mice is a pivotal step for
judging the impact of impaired miRNA proportions on brain morphology at the organism
level. Brain morphometry using anatomical brain magnetic resonance imaging (MRI) is a
powerful modality with high spatial resolution, which could be attempted both in vivo and
ex vivo beyond species [12].

In this review, we overview recent findings in the understanding of the biological roles
of miRNAs in typical neuronal development and neurodevelopmental diseases including
psychiatric disorders, and overview brain MRI approaches as a tool for evaluating the
impact of impaired miRNAs on the brain morphology on the individual level.

2. miRNA Biology in Brain Development and Diseases

Extensive research has revealed a pivotal role in biological processes and disease
pathogenesis. For example, it has been shown that certain miRNAs regulate cell prolifera-
tion and are involved in tumorigenesis [13]. In particular, microRNAs have been reported
to be involved in the regulation of specific brain development and neural functions such as
axon formation [14–18] and synaptogenesis [19–26], and in the causes and pathophysiology
of neurological diseases such as neurodevelopmental and psychiatric diseases including
autism spectrum disorder (ASD) [27–29] and major depressive disorder (MDD) [30,31].
Here we summarize the role of miRNAs in biological processes in the central nervous
system and in disease pathogenesis of developmental disorders (Tables 1 and 2).

Table 1. microRNAs (miRNAs) involved in brain development.

Function miRNA Effects Targets References

Neurogenesis let-7b Positive TLX, cyclin D1 Zhao et al. [32]
Hmga2 Xia and Ahmad, [33]

miR-124 Positive SCP1 Visvanathan et al. [34]
BAF53a Yoo et al. [35]
PTBP1 Makeyev et al. [36]
SOX9 Cheng et al. [37]

Ephrin-B1 Arvanitis et al. [38]
miR-137 Positive TLX, LSD1 Sun et al. [39]

Negative Ezh2 Szulwach et al. [40]
miR-9 Positive FoxG1, Meis Shibata et al. [41]

TLX Zhao et al. [42]

miR-34 Positive synaptotagmin-1,
syntaxin-1A Agostini et al. [43]

miR-184 Negative Numbl Liu et al. [44]
miR-128 Positive UPF1 Bruno et al. [45]
miR-153 Positive Jagged1, Hey2 Qiao et al. [46]; Zhang et al. [47]

miR-199a Positive Smad1 Nakashima et al. [48]

Migration miR-9 Negative stathmin Delaloy et al. [49]
miR-379-410 cluster Positive N-cadherin Rago et al. [50]

miR-128 Negative PHF6 Franzoni et al. [51]
miR-19 Positive Rapgef2 Han et al. [52]

miR-129 Negative Fmr1 Wu et al. [53]

Axon formation miR-9 Negative Map1b Dajas-Bailador et al. [14]
miR-124 Positive Lhx2 Sanuki et al. [17]

RhoG Franke et al. [15]
miR-17-92 cluster Positive PTEN Zhang et al. [18]

miR-132 Positive Rasa1 Hancock et al. [16]

Dendrite formation miR-137 Negative Mib1 Smrt et al. [54]
miR-134 Positive Pumilio2 Fiore et al. [55]
miR-132 Positive p250GAP Magill et al. [56]

miR-9 Positive REST Giusti et al. [57]
miR-214 Positive Qki Irie et al. [58]
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Table 1. Cont.

Function miRNA Effects Targets References

Synaptogenesis miR-134 Negative Limk1 Schratt et al. [24]

miR-34a Negative synaptotagmin-1,
syntaxin-1A Agostini et al. [19]

miR-138 Negative APT1 Siegel et al. [25]
miR-125b Positive NR2A Edbauer et al. [20]
miR-132 Positive p250GAP Impey et al. [22]

Negative? MeCP2 Klein et al. [23]; Hansen et al. [21]
miR-199a Positive Pde4d, Sirt1, and Hif1a Tsujimura et al. [26]

Table 2. microRNAs (miRNAs) involved in the pathogenesis of neurodevelopmental and psychiatric
disorders.

Disease miRNA Changes Targets and Functions Reference

Rett syndrome miR-199a
Reduced expression in
Rett syndrome brain

and model

Targets Pde4d, Sirt1,
and Hif1a to enhance
mTOR signal activity

Tsujimura et al. [26]

Reduced expression in
the Rett

syndrome model

Targets Smad1 to
repress BMP-Smad

signaling
Nakashima et al. [46]

MECP2 duplication
syndrome (MDS) miR-197 Enhanced expression in

MDS model Targets ADAM10 Wang et al. [59]

Autism spectrum
disorder (ASD) miR-23 Abnormal expression

in ASD patient samples Useful for biomarkers Ghahramani Seno et al. [27]

miR-106b Abnormal expression
in ASD patient samples Useful for biomarkers Sarachana et al. [29]

miR-873 Abnormal expression
in ASD patient samples

Targets ARID1B,
SHANK3 and NRXN2 Lu et al. [28]

Angelman syndrome
(AS) miR-708 Reduced expression

in AS

Targets Neuroatin,
leading to a reduction
in intracellular Ca2+

Vatsa et al. [60]

Schizophrenia miR-137
Enhanced expression in
Schizophrenia patient

samples
Targets Cplx1 and Sty1

Schizophrenia Psychiatric
Genome-Wide Association Study

(GWAS) Consortium, [61];
Green et al. [62];
Potkin et al. [63];

Mothersill et al. [64];
Whalley et al. [65];
Siegert et al. [66]

miR-9
Enhanced expression in
Schizophrenia patient

samples

Regulation of neural
migration Topol et al. [67]

Major depressive
disorder (MDD) miR-9 Enhanced expression in

MDD patient samples Useful for biomarkers He et al. [30]

miR-132 Enhanced expression in
MDD patient samples Useful for biomarkers Qi et al. [31]

2.1. Neurogenesis

Neurons are produced from neural stem cells and neural progenitor cells through
a biological process called neurogenesis [68]. Neurogenesis is followed by migration,
differentiation, formation of axons and dendrites, and synaptogenesis, all of which are
essential for normal brain development and function. Therefore, neurogenesis is one of
the fundamental processes for brain formation [68]. In mammalian development, the
cerebral cortex becomes populated by inhibitory interneurons and excitatory projection
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neurons [69]. These inhibitory interneurons and excitatory projection neurons are produced
in subventricular zones (SVZ) and proliferative ventricular zones (VZ) of the cortex that
are located at the walls of the lateral ventricles of the brain. Excitatory neurons are derived
from multipolar basal intermediate progenitors (bIPs) that have delaminated from the
apical and basal surface and reside in the SVZ or are generated from apical radial glia (aRG)
in the dorsal VZ in mice [68,70,71]. In humans, an RGs produce ununiform populations
of proliferative basal progenitors (BPs), such as bIPs, and a second population of RG
which lose their apical anchoring and move their cell body into the outer SVZ (oSVZ).
This basal radial glia (bRG) has been shown to be important for cortical expansion and
gyration [72–74]. On the other hand, in the distant medial and caudal ganglionic eminences
(GEs), inhibitory GABAergic interneurons are specified. Within the mouse GE, a VZ and
IP containing RGs and an SVZ containing numerous subapical progenitor cells (SAPs)
develop, with the SAPs and IPs undergoing 60–70% of the total mitosis seen in the GE, thus
expanding the pre-migratory interneuron population. [75].

Over the last few decades, studies have revealed gene and signal pathways that
regulate neurogenesis [68,76]. On the other hand, recent studies have shown that miRNAs
act as novel regulators of neurogenesis. let-7b, a let-7 miRNA family member, is expressed
in the mammalian brain and is enriched during neurogenesis. let-7b has been shown to
control the proliferation and differentiation of cortical progenitors by targeting TLX, a
nuclear receptor that enhances cell cycle progression in the developing brain, and cyclin
D1, a cell cycle regulator [32]. Consequently, let-7b promotes neurogenesis. Another
study has reported that let-7b also positively modulates neurogenesis by targeting the
High mobility group AT-hook 2 (Hmga2) in the mammalian retina [33]. MiR-124 is one of
the miRNAs that are specifically expressed in the brain and has been shown to promote
neurogenesis by targeting five negative regulators of neuronal differentiation such as Small
CTD Phosphatases 1 (SCP1), BAF complex 53 kDa subunit (BAF53a), Polypyrimidine tract
binding protein 1 (PTBP1), SRY-box containing gene 9 (SOX9) and Ephrin-B1 [34–38]. A
more recent study reports that miR-124 is regulated by Down syndrome critical region 1
(DSCR1)-mediated ten-eleven translocation 1 (TET1) splicing to control adult hippocampal
neurogenesis [77]. It has been shown that TET1 is a demethylase and controls the gene
expression involved in both adult and embryonic neurogenesis [78,79]. miR-137 was found
to promote positively neuronal differentiation and repress the proliferation of NSCs/NPCs
in the SVZ of adult mouse brains [80]. In another report, miR-137 was shown to form
a regulatory loop with TLX and LSD1, a transcriptional co-repressor of nuclear receptor
TLX, in the NSCs/NPCs from the ventricular zone of embryonic mouse brains [39]. TLX
recruits LSD1 to the promoter region of the miR-137 to repress miR-137 expression. Then, in
turn, miR-137 targets and suppresses the LSD1 expression through 3′ UTR of LSD1 mRNA.
Subsequently, enhanced miR-137 expression inhibits NSC proliferation and promotes
neuronal differentiation. Other research showed that the methyl CpG binding protein
2 (MeCP2) associates with SRY-box containing gene 2 (Sox2) and suppresses miR-137
expression by binding to the miR-137 promoter. Altered miR-137 targets the enhancer
of zeste homolog 2 (Ezh2), a histone methyltransferase that regulates the maintenance
of the bivalent chromatin states of stem cells. Consequently, miR-137 controls the fate
of NSCs through epigenetic regulation [40,81]. It has been reported that miR-9 regulates
corticogenesis through the regulation of the proliferation and differentiation of cortical
progenitors. miR-9-2/3 double-mutant mouse, which shows a remarkable decrease of
mature miR-9 and its complementary miR-9* exhibits various abnormalities in telencephalic
structures. In the mutant embryos, enlarged ventricles with hypoplastic cortical upper
layers and decreased numbers of interneurons and Cajal–Retzius cells were found in the
cerebral cortex. However, the radial glia scaffold was normally constructed in the embryos.
Mechanistically, miR-9 was shown to target multiple transcriptional factors such as FoxG1
and Meis2 [41]. Also, miR-9 was reported to suppress NSCs proliferation and enhance
neural differentiation by targeting TLX [42]. miR-34a was shown to target synaptotagmin-1
and syntaxin-1A to control neuronal differentiation under control by a p53-family member
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transcription factor TAp73 [43]. Liu et al. reported that High levels of miR-184 enhance
proliferation but inhibit differentiation of adult NSCs. In addition, they showed that
methyl CpG binding protein 1 (MBD1) represses miR-184 expression and miR-184 in turn
negatively regulates Numblike (Numbl), a regulator of brain development, by binding
to the 3′-UTR of Numbl mRNA [44]. Bruno et al. linked the miRNA and Nonsense-
mediated decay (NMD) in the regulation of neuronal differentiation [45]. They reported
that brain-specific miR-128 inhibits NMD by targeting the RNA helicase UPF1 and the
exon junction complex core component MLN51 to control neuronal differentiation. Recent
studies have shown that miR-128 modulates the proliferation and neurogenesis of cortical
neural progenitors by targeting pericentriolar material 1 (PCM1) and miR-153 promotes
neurogenesis by regulating the Notch signaling pathway through targeting of Jagged1
and Hey2 [46,47]. Furthermore, we recently reported that MeCP2 and its downstream
target miR-199a promote neuronal differentiation of NSCs/NPCs by regulating BMP-smad
signaling through targeting Smad1 [26,48].

2.2. Neuronal Migration

During development, the migration of neurons is one of the key steps for proper brain
development and function. A highly regulated and coordinated series of molecular and
cellular events are needed to construct the different laminae of the cortex in rodents and
humans [82]. The human cerebral cortex is the most highly developed brain region and
plays a pivotal role in integrating and processing information from the entire body resulting
in higher behaviors such as motor and social behaviors [83].

In the early developmental stages, newborn deep-layer excitatory neurons produced
from the radial glial cells migrate radially from the VZ towards the marginal zone (MZ)
undergoing somal translocation to form the cortical plate (CP). In the late developmental
stage, As the cortex thickens, neonatal neurons change to multipolar migration until they
reach the intermediate zone (IZ). In this process, multiple processes can be dynamically
expanded and contracted. Then, multipolar cells shift into a bipolar shape [84]. After this
transition, neurons begin directed radial migration through the CP and IZ using RG fibers
as a migratory scaffold [84]. Then, upon reaching the outermost periphery of the CP, it
switches to the terminal translocation mode. In this mode, the somata rapidly migrate in
a radial glia-independent manner, terminating their migration just below the MZ, where
they cross paths with previously born neurons [82,84]. Accordingly, the six layers of the
cortex form in an inside-out and birthdate-dependent manner [85]. On the other hand,
Interneurons initially migrate long distances into the cortex in two tangential streams. They
then migrate radially and integrate into the various layers of the cortex [86–89].

The precise construction of the cortical layers by the migration of neurons is strictly
regulated by various intracellular and extracellular signals and dysregulation of neuronal
migration is implicated in various diseases [82]. Among these signals, Reelin signaling
has been well studied and shown that Reelin signaling and its regulatory factors play a
key role in neuronal migration [84]. In addition to these factors, several miRNAs have also
been reported to control the migration of neurons. In an earlier study, in addition to the
other functions in the nervous system, miR-9 was shown to inhibit neuronal migration
of human NPCs from embryonic stem cells of human [49]. The study also reported that
miR-9 targets and represses stathmin which increases microtubule instability and whose
expression in human NPCs correlates inversely with that of miR-9. Rago et al. reported
that miRNAs belonging to the miR-379-410 cluster are expressed in cortical progenitors
and neurons, and the miR-379-410 cluster modulates neuronal migration during later
developmental stages by targeting N-cadherin [50]. miR-128 controls the process of radial
migration of neurons during the development of cortical lamination through the targeting
Börjeson-Forssmann-Lehmann Syndrome gene Phf6 mRNA [51]. Han et al. found that
miR-19 enhances the migration of adult-born neurons by repressing Rapgef2 [52]. A recent
study showed that miR-129 negatively regulates neuronal migration by targeting Fmr1
mRNA which are transcripts of Fragile X syndrome gene Fmr1 [53].
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2.3. Axon Formation

Axons transmit information to other neurons by chemical signals. Therefore, the
proper development of axons is necessary for a functional neural circuit. It is becoming
clear that the presence of mRNA and its post-transcriptional regulation are important
molecular mechanisms for axon development. Recent research has also revealed that
miRNAs exist in axons and contribute to axon development.

Recent studies have identified several neuron-specific and brain-enriched miRNAs.
It is known that miR-124 expression is upregulated during brain development, which is
involved in axon elongation. [90]. A study reported that miR-124 modulates the develop-
ment of axons by repressing LIM/homeobox protein 2 (Lhx2) expression [17]. Another
study showed that miR-124 regulates axon growth by targeting mRNA for RhoG, a low
molecular weight GTPase [15].

The brain-enriched miR-9 has been also well-examined among these miRNAs. Recent
research reported that miR-9 is expressed in post-mitotic neurons and is detected in the
axons of primary cortical neurons. miR-9 overexpression repressed the length of the axon
and endogenous miR-9 inhibition had the opposite effect, suggesting that miR-9 inhibits
elongation of the axon. These effects have been reported to occur via the regulation of
microtubule-binding protein 1b (Map1b), a protein important for microtubule stabilization,
a target of miR-9 [14].

A report by Zhang et al. showed the presence of miR-17-92 cluster components in
cultured neurons, particularly in distal axons. Elevated expression levels of this cluster
facilitated the development of axons through the reduction of phosphatase and tensin
homolog (PTEN) expression, whereas the miR-19a inhibiting, one component of the cluster,
repressed axonal development [18].

A recent study has revealed that miR-132 is a positive modulator of axonal formation
in dorsal root ganglia (DRG) in mice. It has also been reported that miR-132 regulates the
Ras GTPase activator Rasa1 expression [16].

2.4. Dendrite Formation

Proper dendrite growth and branching are critical for neuronal circuit function, as
dendrites are the sites of most synaptic contacts. Recent evidence has shown that miRNAs
are involved in the control of dendritic growth. This chapter outlines recent progress
in elucidating the molecular mechanisms mediated by miRNAs that control dendrite
development.

In early studies, Smrt et al. reported that brain-enriched miRNAs, particularly miR-137,
act an important role in regulating dendritic growth. miR-137 overexpression negatively
regulated dendritic morphogenesis, while blocking the function of miR-137 had the oppo-
site action. It has been reported that Mind bomb one (Mib1), which is a ubiquitin ligase
known to be important in neurodevelopment, controls this miR-137 effect on dendrite
formation [54]. miR-9 has been reported to be involved in axon development and in regu-
lating dendrite growth. The blocking of miR-9 causes impaired dendrite growth in vivo via
repression of the transcriptional repressor RE1 silencing transcription factor (REST) [57]. It
has been demonstrated that miR-132 controls the dendritic maturation of newborn neurons
in the adult hippocampus, by regulating the GTPase-activating protein p250GAP by genetic
experiment [56]. Another research showed that miR-134 is a component of miR-379-410, a
large cluster of brain-specific miRNAs that are actively involved in dendrite development.
miR-134 is a component of miR-379-410, a large cluster of brain-specific miRNAs. This
miR-134 induces the development of dendrites by repressing the expression of the trans-
lational repressor Pumilio2 mRNA, an RNA-binding protein known to control dendritic
formation [55].
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Our recent study reported that miR-214 controls dendrite formation [58]. Our experi-
ments revealed that miR-214 expression positively controls the development of dendrites
while inhibiting one of the mature forms of miR-214, miR-214-3p represses dendrite growth.
It has been also shown that miR-214-3p targets the conserved 3′-UTR of quaking (Qki), a
schizophrenia risk factor.

2.5. Synaptogenesis

Several studies have shown that miRNAs play crucial modulators of synaptic plasticity
and morphomechanics. Thus, it has been thought that miRNAs are fundamental to higher
brain functions such as learning and memory [91].

Many miRNAs have been shown to function as negative modulators of synaptogenesis.
For example, miR-134 was reported as the first miRNA to regulate synaptogenesis. miR-134
expression reduced dendritic spine size via translational repression of Lim-domain containing
protein kinase 1 (LimK1), a regulator of actin polymerization in cultured neurons [24]. It has
been also reported that miR-34a represses synaptic function by targeting mRNAs of the
synaptic components syntaxin-1A and synaptotagmin-1 [19]. A brain-enriched miRNA,
miR-138 is reported to be localized in the dendrite and inhibits dendritic spine size via the
repression of acyl protein thioesterase 1 (APT1), an enzyme regulating the palmitoylation
status of multiple proteins that is shown to act at the synapse [25].

It has been also shown the positive modulation of synaptogenesis by miRNAs. miR-
125b and miR-132 were reported to be linked with fragile X mental retardation protein
(FMRP). Increased miR-125b expression resulted in longer and thinner processes of cultured
hippocampal neurons, while expression of miR-132 induced stubby and mushroom-shaped
spines [20]. miR-125b was also reported to inhibit its target expression, NMDA receptor
subunit NR2A, along with argonaute 1 and FMRP. Another research revealed that miR-132
suppresses the expression of the Rho GTPase-activating protein p250GAP, supporting an
active role in synapse formation in vitro and in vivo [22]. It has been reported that mRNA
encoding the methyl CpG-binding protein 2 (MeCP2), a modulator of neuronal morpho-
genesis and synapse development is targeted by miR-132 [21,23]. In addition, our studies
have reported that MeCP2 facilitates the miR-199a processing as a microprocessor Drosha
complex component and that miR-199a positively controls excitatory synaptic density and
transmission via repressing expression of mTOR signal inhibitors in the cultured neural
stem cells and neurons [26,48].

2.6. The Pathogenesis of Neurodevelopmental and Psychiatric Diseases

Over the last few years, much research has reported that altered post-transcriptional
regulation induced by dysregulation of miRNA might contribute to abnormal neuronal
plasticity and function in diseases [92]. Particularly, miRNAs also have been linked to the
pathogenesis of neurodevelopmental and psychiatric disorders [93]. Here, we summarize
miRNAs that have been reported to contribute to the pathophysiology of neurodevelop-
mental and psychiatric diseases.

MECP2 mutations cause Rett syndrome (RTT), a devastating neurodevelopmental
disease. Recently, our research has reported a role for miR-199a in the pathophysiology of
RTT [26,48]. Our evidence has revealed that MeCP2 promotes miR-199a processing as a
Drosha complex component at the post-transcriptional level and miR-199a elevates mTOR
signaling activity, which is implicated in a variety of neurodevelopmental and psychiatric
diseases [94], by repressing expression of mTOR signaling inhibitors including Sirt1, Hif1α,
and Pde4d. Also, we have shown that the genetic deletion of miR-199a recapitulates
many phenotypes of RTT model mice. It has also been revealed the dysregulation of miR-
199a expression at a post-transcriptional level in the RTT brain. In addition, we recently
reported that MeCP2/miR-199a axis regulates neural stem/precursor cell differentiation
by inhibiting bone morphogenetic protein (BMP)-Smad signaling through targeting Smad1,
a downstream transcription factor of BMP, and that differentiation defects caused by
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dysregulation of MeCP2/miR-199a/BMP signaling pathway contributes to pathological
conditions.

Duplication of the MECP2 gene also leads to a severe neurodevelopmental disor-
der called MECP2 duplication syndrome (MDS). MDS predominantly affects males and
is characterized by a broad range of symptoms, including severe intellectual disability,
seizure, speech abnormalities, hypotonia, developmental delays, and recurrent respiratory
infections [95]. A recent study reported that brain and cultured neural progenitor cells
(NPCs) of Tg (MECP2) transgenic mice that enhanced MeCP2 expression increases NPC
differentiation into neurons and MeCP2 promotes the processing of miR-197 in NPCs
derived from Tg mice. This work also showed that miR-197 targets the mRNA of ADAM10
and repressed its expression [59].

Autism spectrum disorder (ASD) is a common complex neurodevelopmental disorder
that is characterized by impaired social communication, restricted and repetitive behavior,
and limited interests. Accumulating study has suggested that genetic and environmental
factors contribute to the pathogenesis of ASD, and the involvement of miRNA in ASD
pathology has also been shown. miRNAs have been well studied for use as a biomarker of
ASD [27,29]. Expression profiling of miRNA in lymphoblasts derived from ASD patients
revealed differentially expressed miRNAs, such as miR-23a and miR-106b, that target genes
significantly involved in neurological functions and disorders. Recently, high-efficiency
whole-exome sequencing of Australian families with ASD identified rare single nucleotide
variants within mature miR-873-5p sequences. The research group also showed that miR-
873 variants have a 20–30% inhibition effect on candidate autism risk genes ARID1B,
SHANK3, and NRXN2 [28].

Angelman syndrome (AS) is a rare genetic and neurodevelopmental disorder char-
acterized by severe developmental delay, intellectual disability, seizure, microcephaly,
speech impairment, and movement disorder. AS is caused by the loss of function of a
ubiquitin ligase UBE3A gene located at chromosome 15q11-q13. The UBE3A expression is
paternally imprinted in neurons and loss of function of maternally inherited UBE3A cause
AS [96,97]. AS model mice deficient in maternal Ube3a show various behavioral features of
AS, including motor abnormality and cognitive impairment [98]. A recent study reported
that miR-708 is downregulated in the brain of AS mice and miR-708 targets endoplasmic
reticulum resident protein neuronatin leading to a decrease in intracellular Ca2+ [60]. These
results suggest that mmiR-708-neuronatin-mediated aberrant calcium signaling might be
implicated in AS pathogenesis.

miRNAs have also been shown to be involved in the pathogenesis of schizophrenia,
one of the major psychiatric disorders. A genome-wide association study (GWAS) in
schizophrenia patients reported that rs1625579, which is detected within the putative
miR-137 primary transcript, is linked with an increased risk of schizophrenia [61]. Other
groups have also confirmed this association [62,63]. Furthermore, it has been revealed
that miR-137 variation specifically influences the activity of the posterior right medial
frontal gyrus during a cognitive task and functional connectivity of the front-amygdala
and dorsolateral prefrontal-hippocampus in emotional tasks by functional MRI (fMRI)
studies [64,65]. A report has also revealed that elevated miR-137 expression levels induce
the repression of presynaptic target genes including synaptotagmin-1 (Syt1) and complexin-1
(Cplx1) in vitro and in vivo, resulting in changes in synaptic plasticity and abnormality of
synaptic vesicle trafficking [66]. Topol et al. have shown the role of reduced levels of
miR-9 in a subset of schizophrenia patient-derived neural progenitor cells. This study has
demonstrated a strong correlation between miR-9 regulatory activity and its expression,
and miR-9 manipulation affects neural migration [67].

Major depressive disorder (MDD) is another high-prevalence psychiatric disorder and
miRNAs have been reported to be implicated in MDD pathogenesis. Recently, research
combining peripheral miRNA levels with MRI analysis has begun to be reported. Qi
et al. have found that the expression levels of miR-132 in the peripheral blood of unmedi-
cated patients with MDD are higher than those in healthy control subjects, and miR-132
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dysregulation in MDD is associated with multi-facets of brain function and structure in
the front-limbic network [31]. He et al. have reported that miR-9 is upregulated in the
peripheral blood of MDD patients and abnormal expression of miR-9 is involved in altered
amygdala connectivity in MDD by using fMRI [30].

3. Neuroimaging Approaches Using MRI Technology

As mentioned above, miRNAs have been shown to contribute significantly to brain
structure and function and are essential for normal brain development. Therefore, dys-
regulation of miRNAs would cause a variety of changes in the diseased brain. Here, we
review ex- and in vivo MRI both of which can be useful for investigating the biological
functions of miRNA, especially during brain development, starting from fetal ages. MRI is
widely recognized as the most useful modality for in vivo investigation of brain structures
of humans and animal models because of its ability to image large areas, relatively high
spatial resolution, high reproducibility, and minimally invasive nature. Although histology
is superior to MRI in terms of spatial resolution and directness, MRI has an advantage
over histology in comprehensively analyzing the whole brain (e.g., regional volumes and
cortical curvatures), and in identifying global fiber connections. Unlike DNA and RNA
expression, spatial expression of miRNAs in anatomical regions of the brain is unknown.
Therefore, comprehensive studies of the entire brain, such as brain MRI, are necessary. In
addition, morphological MRI analysis of the prenatal brain will play an important role in
assessing the neurodevelopmental process due to genetic abnormalities.

3.1. Pros of Ex Vivo MRI over In Vivo MRI

Structural and diffusion ex vivo MRI provides images with a high spatial resolution
(e.g., 100–800 µm, depending on the size of the specimen and scanners used) and high
signal-to-noise ratio (SNR) [99,100]. MRI signal strength decreases with the distance from
the coils. Therefore, high SNR and spatial resolution can be more easily aimed by using
MRI scanners with high field strengths and custom-made radiofrequency (RF) coils that can
be closely placed to the specimen [101,102]. Recently, efforts have been made to image the
whole ex vivo adult brain at 100–200 µm [103,104]. However, in general, another advantage
of ex vivo MRI is that we can process the sample into smaller pieces to obtain better images.
For example, the location of the brain stem and cerebellum in vivo makes it challenging
to obtain optimal SNR and spatial resolution of the cerebellar cortex and white matter
pathways. However, in ex vivo MRI studies, the brainstem [105] and cerebellum [106] could
be dissected from the cerebrum and scanned with an MR coil closely placed on the surface
of the cerebellum, enabling the highest possible SNR and spatial resolution for the selected
brain region.

Furthermore, the scan time of in vivo MRI is limited by the subject’s ability to remain
still, while ex vivo MRI scan times take many hours to increase SNR and are limited
almost exclusively by the availability of MRI scanners and their cost of use. Therefore,
ex vivo MRI can detect information in detail about tissue properties that cannot be seen
on in vivo MRI. In vivo, MR images tend to have poor image quality due to artifacts from
subject motion [107,108] and air-tissue boundary around the ear/nasal cavities [109] in
addition to low spatial resolution. Ex vivo MRI is not easily affected by motion artifacts,
and susceptibility artifacts can be reduced by proper and careful sample preparation, such
as avoiding bubble formation [110]. Thus, careful evaluation of high-quality ex vivo MR
images in combination with histology can provide a basis for detecting subtle cortical
abnormalities with T1w and T2w MRI and abnormal fiber tract development with dMRI.

Finally, the spatiotemporal structural changes of the human fetal brain that can be
assessed by ex vivo MRI are complex processes due to spatiotemporal changes in gene
expression and epigenetic modifications during development [111,112]. Studying the
relationship between gene expression patterns and dMRI tractography at each gestation
age would contribute to a better understanding of the spatiotemporal changes in human
brain development (for reviews, e.g., [113–116]). Ex vivo MRI combined with genetic and
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histological analysis would be the first step toward a comprehensive understanding of the
possible effects of gene expression on regional morphology and fiber growth/elongation.

3.2. Advances in Ex Vivo Structural MRI

Ex vivo structure MRI could provide images at the same time point as the histolog-
ical examination of the tissue, ensuring the deep investigation of the neuropathological
characteristics of brain abnormalities [117,118]. Importantly, e.g., regional brain volumes
measured by in vivo and ex vivo MRI present a linear relationship [117].

The typical approach of ex vivo MRI employs autopsy-extracted brains and formalin-
fixed by immersion [119]. This approach (ex vivo ex situ MRI) has a disadvantage in
manipulations of extraction from the skull and fixation that potentially induce major and
inevitable adverse effects for MRI scans [120]. These adverse effects are attributed to defor-
mation by extraction [121], a gradient of fixation from surface to deep white matter [122],
and artifacts by air bubbles trapped in the subarachnoid spaces [110]. To overcome the
disadvantage, some investigators propose an alternative approach that employs the brain
remaining inside the head as ex vivo in situ MRI [120]. Another progress in ex vivo MRI is
whole-brain, ultra-high resolution MRI with 100–170 um isotropic resolution [103,123,124],
which promises to bridge the gap between histology and conventional imaging [123].

On the other hand, in in vivo fetal MRI, the majority of protocols use single-shot T2w
MRI sequences [125] that are robust to fetal motion. However, single-shot T2w scans tend
to be inferior to multi-shot turbo spin echo (TSE) scans [126], which are often performed
after birth. Furthermore, the TSE protocol as used in vivo is not optimal for characterizing
the transient zones found in the fetal brain ex vivo. This is especially true in the final stages
of fetal development, most likely due to differences in the tissue characteristics of the in vivo
and ex vivo (fixed) brain. One way to address this issue is to obtain T2 maps of postmortem
samples and infer the optimal imaging parameters for TSE that maximize T2 contrast [127].

3.3. Advances in Ex Vivo Diffusion MRI

Ex vivo dMRI is useful for detecting fine diffusion properties in tissues. Tractogra-
phy techniques can be used to identify pathways throughout the brain mantle in three
dimensions. Conventional DTI tractography remains practical when studying the over-
all picture and quantitative assessment of fiber pathways such as the corpus callosum,
thalamocortical pathways, and cerebellar nodules, but can obscure fiber trajectories at
crossing fibers. High-angular resolution dMRI (HARDI) [128,129] theoretically provides
excellent angular resolution of fiber pathways traversing long distances in the brain with
optimal scan parameters (e.g., high b-values). Importantly, in vivo dMRI tends to identify
only major bundles, while ex vivo dMRI clearly identified u-fibers and fine gray matter
fibers along with long association pathways even in patients with neurological disease
(Figure 2) [130]. This advantage in ex vivo dMRI leads to attempting a comparison between
dMRI-derived fibers and histological findings.

Spatiotemporal maturation time-courses of the vestibular, cingulate bundle, corpus cal-
losum, thalamocortical pathways, inferior longitudinal bundle, inferior anterior-posterior
bundle, caudal bundle, arcuate bundle, as well as the insula, cerebellum, and many other
pathways have been reported during the human fetal period using HARDI [100,131–135].
Ex vivo dMRI yields an exceptional resolution of fiber pathways, and comparable results can
be obtained using in vivo imaging (e.g., [136]). Specifically, radial coherence in the cortex,
which is identified in the human fetal brain using in vivo and ex vivo MRI, is consistent with
the presence of radial glial fibers [136]. The high degree of reproducibility of ex vivo and
in vivo results [105,137] may be important information for the clinical interpretation of this
technique.
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3.4. Translation of Ex Vivo Results to In Vivo Application

Ex vivo fetal brains are essential for evaluating histology and MRI findings, which can
be used to guide the detection of cortical and fiber tract abnormalities in vivo. If an abnormal
dMRI tractography pattern is detected in vivo and the same fiber pattern is detected in ex
vivo dMRI tractography, the in vivo pathway is more likely to be a “real” pathway rather
than noise or artifacts from MRI scans and/or dMRI tractography algorithms. However, the
correlation between histology and MRI findings is often difficult to interpret. The reasons
for this difficulty include the following points; (1) systematic correlation and coreference
between histology and MRI images exist only for the human adult brain [138], (2) the
definition of transient fetal zones on MRI images relies on scattered open histology slices
that do not cover the entire brain [139–143], and (3) even some useful atlases covering
the entire brain are based on descriptions suitable for the developing rodent brain. Thus,
to our knowledge, no study has systematically examined MRI-histological correlations
of the human fetal and child brain across the entire telencephalon. However, only the
correlation of ex vivo MRI and histology can provide sufficient information for a biologically
correct interpretation of in vivo MRI findings. Although in vivo MRI has lower resolution
and unpredictability due to fetal movement compared to ex vivo MRI, in vivo fetal brain
structural and diffusion MRI are well investigated [144–150]. Therefore, new MR image
acquisition and reconstruction techniques [151–154] would allow detailed high-resolution
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ex vivo MRI atlas of the developing fetal brain, which can provide valuable information for
the interpretation of in vivo fetal MRI findings and identify areas that still require technical
improvements in MRI acquisition, reconstruction, or analysis.

Advances in in vivo fetal MRI techniques and interpretation directly contribute to
advances in fetal therapies such as fetal surgery [155,156] and gene therapy [157,158].
Quantitative MRI analysis is essential not only for early diagnosis and evaluation of treat-
ment efficacy but also for the assessment of treatment side effects, especially in the context
of neurological diseases. Because neuronal migration and cortical gyration during brain
development are closely related to spatiotemporal patterns of gene expression [159,160],
we need to be aware of the potential risk of brain morphological modulation due to unex-
pected changes in gene expression patterns, especially in gene therapy need to be aware
of potential risks of brain morphology modulation due to unexpected changes in gene
expression patterns. Detailed ex vivo fetal MRI observations should aid in the interpretation
of atypical morphological findings in various in vivo fetal MRI studies, including these fetal
treatments.

For the investigation of infantile brains, the severity of prematurity and severity
of identifiable brain lesions are related to smaller brain volumes, gray and white matter
volumes at term equivalent age, childhood, and adolescence [161–163]. In addition, atypical
brain maturation after preterm birth indicates that the growth trajectories of transient fetal
zones may be affected. Advances in neonatal care have increased the survival rate of
preterm infants, and the prevention of cognitive deficits that these children exhibit later
in life has been arising as a renewed clinical proposition, and MRI-detectable biomarkers
are beginning to serve as a useful tool for identifying cognitive deficits that these children
exhibit later in life [164,165].

4. Concluding Remarks

Accumulating finding has revealed miRNAs are involved in brain development and
disease pathogenesis (Tables 1 and 2). Although functional analysis of miRNAs in the ner-
vous system is still in its early stages, it has been suggested that miRNAs act as important
modulators of neuronal and brain development and the etiology of neurodevelopmental
disorders. Given the fact that numerous miRNAs are enriched or specific to the brain [166]
and that one miRNA can target many genes [167], miRNAs may be considered as a group of
molecules that govern the complex processes of neuronal development and brain function.
Future studies are necessary to identify further functional targets of each miRNA and their
downstream gene networks. Numerous studies have shown that the expression levels of
many miRNAs are altered in various neurodevelopmental disorders [168,169]. Currently,
however, functional studies of miRNAs in vivo are still limited. Therefore, elucidating the
roles of these miRNAs will help to further understand the mechanisms of brain devel-
opment and the pathogenesis of neurodevelopmental disorders, and open new avenues
for designing therapeutic strategies targeting miRNA-mediated pathways in the CNS.
Advances in ex vivo MRI techniques will improve the accuracy and comprehensiveness of
identifying brain morphological changes caused by miRNA alterations across species. In
the near future, combined miRNAs and MRI studies using animal models will be realistic.
In addition to these animal studies, future studies using state-of-the-art MRI technology
will increasingly reveal the importance of miRNAs in human brain development and
disease pathogenesis. Also, MRI-based volumetric measures and specific miRNA changes
have both been proposed as prognostic biomarkers for epilepsy [170]. However, the inter-
relationship between them is not yet known. Therefore, it is important to conduct research
that covers both.
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