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Abstract

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental

condition for which we have an incomplete understanding, and so brain

imaging methods, such as magnetic resonance imaging (MRI), may be able

to assist in characterising and understanding the presentation of the brain

in an ADHD population. Statistical and computational methods were used

to compare participants with ADHD and neurotypical controls at a variety

of developmental stages to assess detectable abnormal neurodevelopment

potentially associated with ADHD and to assess our ability to diagnose and

characterise the condition from real-world clinical MRI examinations.

T1-weighted structural MRI examinations (n = 993; 0–31 years old [YO])

were obtained from neurotypical controls, and 637 examinations were

obtained from patients with ADHD (0–26 YO). Measures of average (mean)

regional cortical thickness were acquired, alongside the first reporting of

regional cortical thickness variability (as assessed with the standard devia-

tion [SD]) in ADHD. A comparison between the inattentive and combined

(inattentive and hyperactive) subtypes of ADHD is also provided. A prelim-

inary independent validation was also performed on the publicly available

ADHD200 dataset. Relative to controls, subjects with ADHD had, on
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average, lowered SD of cortical thicknesses and increased mean thicknesses

across several key regions potentially linked with known symptoms of

ADHD, including the precuneus and supramarginal gyrus.

1 | INTRODUCTION

The Diagnostic and Statistical Manual of Mental Disor-
ders (American Psychiatric Association, 2013) defines
attention deficit hyperactivity disorder (ADHD) as a
chronic and consistent appearance of hyperactivity,
impulsivity and inattention which interferes with the
completion of daily tasks and overall patient develop-
ment. ADHD is diagnosed in approximately 5.3% of chil-
dren worldwide (Polanczyk et al., 2007). Several studies
suggest that multiple types of structural abnormalities
are prevalent in patients with ADHD (Baroni &
Castellanos, 2015; Batty et al., 2010; Konrad et al., 2010;
Konrad & Eickhoff, 2010); however, consensus is lacking
in this field.

Magnetic resonance imaging (MRI) provides contrast
between grey and white matter, which is critical in asses-
sing brain structure in patients with a variety of neuro-
logical conditions (Wahlund et al., 2001). MRI contrast
forms the basis for technologies that automate the extrac-
tion of biomarkers from a broad range of brain regions,
such as grey/white matter volumetric measurements, cor-
tical thicknesses and more (e.g. Fischl, 2012).

MRI has been used extensively to assess structural
and functional differences in the brains of patients with
ADHD. Several studies have reported that ADHD pre-
sents with reduced grey matter volumes (Batty
et al., 2010; Bonath et al., 2016; Carmona et al., 2005;
Hoogman et al., 2017; McAlonan et al., 2007; Nakao
et al., 2011), structural connectivity issues (Konrad
et al., 2010; Konrad & Eickhoff, 2010) and inconsistent
findings in terms of cortical thicknesses (Almeida Montes
et al., 2013; Ambrosino et al., 2017; Kumar et al., 2017;
Shaw et al., 2007; Shaw, Lerch, et al., 2006; Silk
et al., 2016; Sörös et al., 2017). Abnormalities in a variety
of regions have been observed to be associated with
populations with ADHD including, but not limited to,
the basal ganglia (Aylward et al., 1996; Qiu et al., 2009),
parietal lobes (Aman et al., 1998; Hart et al., 2012), lin-
gual gyrus (Dibbets et al., 2010), prefrontal cortex (Schulz
et al., 2005) and the cerebellum (Stoodley, 2014). Asses-
sing imaging features of ADHD in a paediatric popula-
tion comes with a multitude of challenges due to the
structural changes between children and adults (Casey
et al., 2000), rapidly changing anatomy and physiology
(Shaw, Greenstein, et al., 2006), and significant variability
in neuroanatomical structures in healthy children. In this

study, we hypothesise that analysis of a large-scale
ADHD population compared with neurotypical controls
using MRI can help elucidate the clinical presentation of
the brain in ADHD, may assist in diagnosis and charac-
terisation and can help act as a clinical reference. We also
hypothesise that regional cortical thickness variability, as
assessed with the standard deviation (SD), may assist in
characterising ADHD. We also hypothesise that differ-
ences can be detected between inattentive and combined
(inattentive and hyperactive) subtypes of ADHD in terms
of regional cortical thicknesses. This study is an analysis
of a wide variety of regional cortical thickness measure-
ments in control and ADHD participants extracted from
volumetric T1 examinations compatible with the auto-
mated assessment of distributed cortical thickness mea-
surements (Fischl, 2012).

2 | METHODS AND MATERIALS

2.1 | Participants

2.1.1 | Boston Children’s Hospital (BCH)

Following approval from BCH’s Institutional Review
Board (informed consent was waived due to a lack of sub-
stantial risk to the patients), electronic patient medical
records were reviewed between 01/01/2008 and
02/24/2016, and patients with an indication of ADHD,
and for which subtype information was available, were
selected for further analysis. All examinations were fur-
ther analysed for imaging quality, such as excessive head
movement and the presence of metal resulting in imaging
artefacts, and were excluded if deemed of insufficient
quality. The ADHD-affected sample size after the quality
control was 637 examinations, and the sample includes
patient examinations retrospectively identified after
ADHD diagnosis later in life. This cohort included
406 MRI examinations from male participants and
231 examinations from female participants. The control
group was selected based on an assessment by a BCH
neuroradiologist that their MRI examination was normal
and that their medical records indicated no neurological
comorbidities, yielding 993 examinations used in previ-
ous analyses (Levman et al., 2017, 2018, 2019, 2021).
Demographic information on our dataset is provided in
Figure 1 and Table 1.
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2.1.2 | ADHD200

Preliminary validation of our primary findings from BCH
was performed on the ADHD200 dataset (a publicly
available dataset used in previous analysis competitions)
acquired from New York University (NYU). NYU was
selected as it was the ADHD200 imaging centre that
exhibited the most overlap with our sample age ranges,
with the NYU-ADHD200 dataset being inclusive of ages
7 to 21 years. All datasets are anonymous, with no pro-
tected health information included, in accordance with
HIPAA guidelines, and all pathological patients had an
official diagnosis of ADHD (Bellec et al., 2017). Histo-
grams demonstrating the age distributions for both the
healthy and control groups from both samples are pro-
vided in Figure 1. Table 1 provides demographic informa-
tion that includes the number of patients with various

subtypes of ADHD, including inattentive type, hyperac-
tive type and combined type. Age demographics are also
provided for the total of all ADHD and control partici-
pants in both datasets.

2.2 | MRI data acquisition and
preprocessing

All participants at BCH were imaged with clinical 3 Tesla
MRI scanners (Skyra, Siemens Medical Systems,
Erlangen, Germany) yielding T1 structural volumetric
images accessed through the Children’s Research and
Integration System (Pienaar et al., 2014). Because of the
clinical and retrospective nature of this study, there is
variability in the pulse sequences employed to acquire
these volumetric T1 examinations, including several

F I GURE 1 Age distribution among sample groups analysed
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types of magnetisation-prepared rapid gradient echo
(MPRAGE) acquisitions and a few traditional T1 struc-
tural sequences and volumetric spoiled gradient recalled
sequences, representing a cross-section of imaging
examinations from a real-world clinical environment.
Spatial resolution also slightly varied but was typically
�1 mm. Strengths and limitations of the large-scale
varying MR protocol approach taken in this study are
addressed in the discussion and associated citations. By
selecting a single ADHD200 imaging centre (NYU), we
are able to provide a preliminary validation of the
results of our variable set of clinical MRI pulse sequence
data (at BCH) with examinations all acquired by an
identical pulse sequence. Motion correction was not per-
formed, but examinations with substantial motion arte-
facts were carefully excluded based on visual
assessment. T1 structural examinations were processed
with FreeSurfer (Fischl, 2012). If FreeSurfer results sub-
stantially failed, they were excluded from this analysis
(i.e. FreeSurfer regions of interest [ROIs] that do not
align to the MRI and examinations where major prob-
lems were observed with an ROI such as a cerebellar
segmentation extending far beyond the extent of the
cerebellum).

2.3 | Statistical analysis

This study included the acquisition of 662 cortical thick-
ness measurements per imaging examination, as
extracted by FreeSurfer (Fischl, 2012) using recon-all to
extract measurements from all available atlases (aparc,
aparc.a2009, aparc. DKTatlas40, BA, BA.thresh, entorhi-
nal_exvivo), in order to support a thorough assessment
of group-wise differences in cortical thickness. Thus,
our analysis reports on overlapping ROIs, including
measurements across a region’s cortex as well as loca-
lised gyral, sulcal and lobular measurements when
available. Data were analysed in the following age
groups: 0–5, 5–10, 10–15 and 15–20 years old. BCH’s
data included very few patients over the age of 20 years,
and so these samples were not included as part of this
statistical analysis; however, the scatter plot in Figure 2
presents all samples vs. age for ease of visual compari-
son. This resulted in m = 3310 group-wise comparisons,
yielding a Bonferroni-corrected threshold for statistical
significance of p < 0.05/m = 1.51e�5. Statistical testing
was performed using the standard t test (Student, 1908)
for two groups of samples. Age-dependent receiver oper-
ating characteristic curve (ROC) analysis allows us to
assess the diagnostic potential of any given FreeSurfer
biomarker at a wide variety of developmental stages.
The area under the ROC curve (AUC) was used as aT
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diagnostic statistic for evaluation. Cohen’s d statistic was
also calculated in each age group (Cohen, 1992) for each
cortical thickness measurement produced by FreeSurfer,
providing a convenient method to assess group-wise dif-
ferences between healthy and ADHD patients at a variety
of developmental stages. Scatter plots were created to
visually present biomarkers-of-interest as they vary with
age. A preliminary analysis comparing this large-scale
study’s findings with the ADHD200 dataset’s NYU imag-
ing results is also provided. Since the NYU dataset has no
patients in the 0–5 age group, direct comparison with
BCH in this age bracket is not possible. Additionally,
FreeSurfer (Fischl, 2012) is not validated for children
below the age of 5 years, so findings from this cohort that
lack validation with the independent ADHD200 dataset
are relegated to the supplementary materials for
reference.

In order to confirm that the findings reported are the
result of group-wise differences between the ADHD and
typically developing patients, a statistical model was con-
structed based on multivariate regression, adjusting each
measurement within each age range to control for group-
wise differences in age, gender and estimated total intra-
cranial volume (using MATLAB’s mvregress function).
This model was used to adjust each cortical thickness
measurement, in order to evaluate whether group-wise
differences between our ADHD and typically developing

populations are the result of age, gender or intracranial
volume effects.

In this study, we hypothesise that brain MRI analysis
combined with advanced analytic techniques can help
characterise ADHD and potentially provide insights
towards better understanding the condition.

3 | RESULTS

It is noteworthy that our clinical cohort from BCH
included 231 MRI examinations from female participants
and 406 MRI examinations from male participants aged
0 to 31 years old, whereas the ADHD200 public dataset,
relied upon to provide a degree of cross dataset valida-
tion, only included participants aged 7 to 21 years old.
This is, in part, related to the difficulty in imaging the
youngest ADHD patients, especially those who have not
yet received an ADHD diagnosis. It is noteworthy that
our large-scale retrospective analysis of BCH patients
included the identification of MRI examinations from
many young patients who would go on to receive an
ADHD diagnosis later in life. As such, this study demon-
strates the potential for large-scale multiyear retrospec-
tive analyses to identify patients with clinical data
acquired prior to their diagnosis of ADHD and thus can
potentially provide valuable information with respect to

F I GURE 2 The supramarginal gyrus cortical thickness (CT) variability as measured with the standard deviation (SD) demonstrating

patients with ADHD (red) vs. neurotypical controls (blue) as varying with age
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the aetiology and development of the condition. This
finding extends previous research demonstrating that
large-scale retrospective analyses can identify MRI exam-
inations acquired prior to diagnosis in autism as well
(Levman et al., 2018, 2019). Although we are not able to
confirm/validate our ADHD findings from this youngest
cohort with the public ADHD200 dataset, we are able to
compare findings across these two datasets in later age
groups.

Our primary findings sorted by the largest observed
effect size (Cohen’s d value) across age groups are pro-
vided in Table 2, presenting brain regions exhibiting the
largest effect sizes that were also statistically significant
(Bonferroni-corrected p < 1.51e�5) in at least one age
range when comparing neurotypical with ADHD patients
from our main BCH dataset. The largest positive effect
sizes are located at the top of the table. Findings demon-
strate several cortical regions that exhibit increased mean
cortical thicknesses in the ADHD cohort. The largest
mean cortical thickness differences were found in regions
such as the right cuneus gyrus, the left precuneus and
the right superior occipital region. Table S1 is the equiva-
lent table inclusive of the 0–5 years old cohort, demon-
strating mean cortical thickness differences in early years

ADHD patients in the right angular gyrus and the left
supramarginal gyrus, findings that require additional val-
idation in future studies.

Table 3 presents brain regions exhibiting the most
negative effect sizes that were also statistically significant
(Bonferroni-corrected p < 1.51e�5) in at least one age
range when comparing neurotypical with ADHD patients
from our main BCH dataset. The most negative effect
sizes are located at the top of the table. Negative effect
sizes imply, on average, smaller cortical thickness vari-
ability (SD) values in the ADHD group. The largest corti-
cal thickness variability differences were found in the
superior frontal gyrus, the caudal middle frontal region
and the middle frontal gyrus. Table S2 is the equivalent
table inclusive of the 0–5 years old cohort, demonstrating
abnormal reductions in cortical thickness variability in
the right supramarginal gyrus, the right intraparietal sul-
cus and Brodmann’s Area (BA) 1 in the right hemisphere
in the ADHD cohort.

Findings comparing patients with inattentive ADHD
to those with combined (inattentive and hyperactive)
ADHD are summarised in Table 4. The largest mean
thickness differences were observed in BA 44, the middle
temporal visual area and the superior occipital gyrus. The

TAB L E 2 Regions exhibiting the largest effect sizes when comparing neurotypical with ADHD patients (Cohen’s d statistic), illustrating

mean/average cortical thicknesses

Measurements 5–10 years 10–15 years 15–20 years

Cuneus MT L (0.208) R (0.19573) L (0.57924) R (0.30097) L (0.70391) R (0.43711)

Precuneus MT L (0.3256) R (0.26954) L (0.39703) R (0.48893) L (0.5782) R (0.41833)

Superior occipital gyrus MT L (0.21983) R (0.28695) L (0.52089) R (0.56299) L (0.4656) R (0.51978)

Caudal anterior cingulate MT L (0.55613) R (0.20656) L (0.012222) R (0.068613) L (0.26524) R (0.23203)

Brodmanns area V1 MT L (0.13829) R (0.043418) L (0.3773) R (0.24909) L (0.53418) R (0.36508)

Mid anterior cingulate gyrus and sulcus MT L (0.52108) R (0.37795) L (�0.010935) R (0.070428) L (0.34088) R (0.44908)

Inferior segment of circular sulcus of insula MT L (0.11456) R (0.19509) L (0.17759) R (�0.011332) L (0.50899) R (0.07347)

Brodmanns area V2 MT L (�0.017042) R (0.01982) L (0.36163) R (0.32778) L (0.50549) R (0.42899)

Precentral gyrus MT L (0.29421) R (0.39039) L (0.50249) R (0.42588) L (0.39802) R (0.4156)

Posterior dorsal cingulate gyrus MT L (0.4731) R (0.38634) L (0.12538) R (0.34505) L (0.33579) R (0.38721)

Superior parietal MT L (0.17479) R (0.16953) L (0.42717) R (0.46606) L (0.45615) R (0.41117)

Calcarine sulcus MT L (�0.01169) R (�0.14384) L (0.44597) R (0.44545) L (0.35923) R (0.46166)

Middle frontal gyrus MT L (0.34943) R (0.4063) L (0.31668) R (0.34337) L (0.45215) R (0.40653)

Mid anterior cingulate gyrus and sulcus MT L (0.52108) R (0.37795) L (�0.010935) R (0.070428) L (0.34088) R (0.44908)

Supramarginal MT L (0.43274) R (0.25785) L (0.23892) R (0.3883) L (0.2449) R (0.36196)

Posterior cingulate MT L (0.42845) R (0.34639) L (0.055881) R (0.12522) L (0.37571) R (0.42042)

Brodmanns area 4p MT L (0.094934) R (0.12678) L (0.38713) R (0.42602) L (0.31312) R (0.37097)

Superior frontal gyrus MT L (0.4137) R (0.30261) L (0.38128) R (0.37691) L (0.42096) R (0.40866)

Brodmanns area 6 MT L (0.27664) R (0.32912) L (0.39256) R (0.28098) L (0.37321) R (0.38583)

Abbreviations: ADHD, attention deficit hyperactivity disorder; L, left; MT, mean thickness; R, right.
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regions exhibiting the largest differences in cortical thick-
ness variability were the calcarine sulcus, the middle
occipital region, the lunatus sulci and the paracentral
region. Table S3 is the equivalent table with the 0–5 years
old age group included. Note that when comparing the
combined and inattentive types of ADHD, differences in
the 0–5 years old age group were modest.

Our results illustrate a common trend of lowered
cortical thickness variability across all age ranges, as
well as higher mean cortical thicknesses in a variety of
brain regions in ADHD. Figure 2 illustrates the distri-
bution of the SD of the cortical thicknesses in the
supramarginal gyrus vs. age for both the healthy and
ADHD participants from BCH. Comparison of our
results from the public ADHD200 dataset with our pri-
mary clinical cohort from BCH is provided in the sup-
porting information results.

4 | DISCUSSION

We performed a large-scale cortical thickness analysis of
structural MRI examinations of the brain in ADHD and
neurotypical individuals and demonstrated a variety of
imaging features exhibiting differences between the two
groups. Our findings include several unreported mea-
surements demonstrating group-wise differences between
ADHD and neurotypical participants, including abnor-
mally reduced cortical thickness variability in key regions
of the brain. To the best of our knowledge, this is the first
study to report on regional cortical thickness variability
biomarkers.

Age-dependent cortical thinning has been observed
repeatedly in healthy populations (Levman et al., 2017),
autism (Levman et al., 2019), Down syndrome (Romano
et al., 2016) as well as in the ADHD population reported

TAB L E 3 Regions exhibiting the most negative effect sizes when comparing neurotypical with ADHD patients (Cohen’s d statistic),

illustrating variability (SD) of cortical thicknesses

Measurements 5–10 years 10–15 years 15–20 years

Superior frontal gyrus SD L (�0.72244) R
(�0.62267)

L (�0.5852) R
(�0.5486)

L (�0.52109) R
(�0.47633)

Caudal middle frontal SD L (�0.65326) R
(�0.60526)

L (�0.50459) R
(�0.46089)

L (�0.51557) R
(�0.37783)

Middle frontal gyrus SD L (�0.64394) R
(�0.513)

L (�0.47795) R
(�0.45232)

L (�0.46457) R
(�0.31461)

Middle anterior cingulate gyrus SD L (�0.64205) R
(�0.53876)

L (�0.43096) R
(�0.23743)

L (�0.41101) R
(�0.13445)

Inferior part of the precentral sulcus SD L (�0.54443) R
(�0.62209)

L (�0.44059) R
(�0.47752)

L (�0.34493) R
(�0.47532)

Supramarginal gyrus SD L (�0.54942) R
(�0.41614)

L (�0.33462) R
(�0.45428)

L (�0.31574) R
(�0.47952)

Intraparietal sulcus and transverse parietal sulci
SD

L (�0.53539) R
(�0.42819)

L (�0.30003) R
(�0.41938)

L (�0.5214) R
(�0.42734)

Rostral middle frontal SD L (�0.49766) R
(�0.39153)

L (�0.35611) R
(�0.45357)

L (�0.31183) R
(�0.14872)

Subparietal sulcus SD L (�0.48036) R
(�0.37187)

L (�0.37862) R
(�0.36196)

L (�0.44022) R
(�0.49891)

Precentral SD L (�0.4864) R
(�0.48769)

L (�0.52487) R
(�0.60473)

L (�0.48555) R
(�0.54611)

Postcentral sulcus SD L (�0.46624) R
(�0.27524)

L (�0.39139) R
(�0.41848)

L (�0.36656) R
(�0.51288)

Brodmanns area 2 SD L (�0.46502) R
(�0.37819)

L (�0.40473) R
(�0.31792)

L (�0.22899) R
(�0.4681)

Caudal anterior cingulate SD L (�0.44189) R
(�0.26985)

L (�0.30337) R
(�0.039436)

L (�0.29426) R
(�0.31257)

Paracentral gyrus and sulcus SD L (�0.32587) R
(�0.26933)

L (�0.42105) R
(�0.32279)

L (�0.37066) R
(�0.31771)

Abbreviations: ADHD, attention deficit hyperactivity disorder; L, left; R, right; SD, standard deviation (variability of thicknesses).
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in the current study. Cortical thicknesses could be linked
with neural fibre tract development; however, the exact
mechanism linking the two remains unknown. If fibre
tract development does influence cortical thickness, one
might expect that those tracts that extend from the white
matter into neighbouring grey matter may play a struc-
tural role in support of cortical thickness. If neural fibre
tracts play a structural role in the cortex and are linked
with cortical thickness, one of the possible mechanisms
linking age-related thickness decreases with known
healthy neurodevelopment is through the process of
pruning. Axon pruning is the process by which a branch-
ing fibre tract has some of its branches removed
(or pruned) after an initial period of synaptic overgrowth
(Chechik et al., 1998). This pruning procedure represents
a critical component of brain maturation, is associated
with maximising memory performance, and has been
shown to continue into at least the third decade of life
(Chechik et al., 1998). Thus, as neuronal pruning pro-
ceeds, the total size of the fibre tracts and all of their
branches gets smaller, and in turn, their reduced size
might result in reduced structural support to the cortex,
leading to decreased cortical thicknesses. It should also
be noted that the concentration of dendrites follows a
pattern of nonlinear reductions with age (Chechik
et al., 1998), with reductions also becoming smaller at
later ages. Nonlinear reduction with age with smaller
reductions at later ages is a pattern that is also observed
in the distribution of cortical thicknesses with age (see
Figure 2 for an example profile for a variability measure-
ment; mean measurements have a similar age-dependent
nonlinear reduction profile). This theory connecting
pruning with cortical thickness might imply delayed/

reduced pruning in the ADHD population, leading to
delayed/lessened age-dependent reductions in cortical
thicknesses, which was observed in our study in a variety
of brain regions (see Table 2 and S1). While the theory of
accelerated pruning in ADHD has been discounted
(Vaidya, 2012), the possibility of delayed/decelerated
pruning in ADHD remains an open question. Delayed/
reduced pruning may also give rise to cortical thickness
variability abnormalities (see Tables 3 and S2) depending
on the distribution of the locations of the sites of pruning
within a given cortical subregion. This is a similar
hypothesis to that previously presented (Almeida Montes
et al., 2012), whereby disordered pruning/maturation in
the occipital cortex was considered as a possible explana-
tion for observed cortical thickness abnormalities.

Our study’s shortcomings include that our consistent
set of MRI scanners at BCH employed a variety of
acquisition protocols, shortcomings of which have
been discussed previously (Levman et al., 2017, 2018,
2019). Detailed information on severity of ADHD and
medication status were not available for the analysis of
the BCH data nor were official DSM diagnoses available.
In order to perform a study of this size, we relied on
ADHD being indicated in the patient’s electronic medical
records. This was a retrospective analysis of clinical data,
so there were a variety of reasons for the referral to MRI.
In our ADHD cohort, 20.2% were referred to MRI
because of seizure(s), 14.6% because of headaches
and 8.4% because of an abnormal EEG. In our neurotypi-
cal cohort, the leading reasons for the MRI examinations
were headaches (60%), to rule out intracranial patholo-
gies (13%) and vomiting (11%). An additional limitation
of this study is that FreeSurfer is not optimised for the

TAB L E 4 Regions exhibiting the largest magnitude of the effect sizes when comparing inattentive with combined-type ADHD patients

(Cohen’s d statistic)

Measurements 5–10 years 10–15 years 15–20 years

Brodmanns area 44 MT L (0.029698) R (0.21701) L (�0.2525) R (0.039978) L (�0.22936) R (�0.97734)

Brodmanns middle temporal visual area MT L (0.11376) R (0.1244) L (�0.12683) R (�0.013673) L (�0.8916) R (�0.51059)

Superior occipital gyrus MT L (�0.15647) R (0.24207) L (�0.22609) R (�0.092917) L (�0.87132) R (�0.47546)

Anterior transverse temporal gyrus MT L (0.06483) R (0.0048776) L (0.072517) R (�0.077125) L (�0.85598) R (�0.43902)

Medial occipito-temporal gyrus and lingual

sulcus MT

L (0.28447) R (0.14237) L (0.34717) R (0.26923) L (�0.85548) R (�0.6201)

Calcarine sulcus SD L (�0.31599) R (�0.46459) L (�0.34025) R (�0.22626) L (�0.56997) R (�0.85201)

Pars opercularis MT L (0.095689) R (0.15692) L (�0.14959) R (0.0041407) L (�0.27997) R (�0.84685)

Inferior occipital sulcus MT L (0.27123) R (0.27069) L (�0.22564) R (�0.068119) L (�0.84657) R (�0.55378)

Middle occipital and lunatus sulci SD L (�0.75022) R (0.074661) L (�0.10747) R (0.18183) L (�0.059342) R (0.070836)

Paracentral SD L (�0.11333) R (�0.41133) L (�0.58893) R (�0.37251) L (�0.15984) R (�0.25385)

Abbreviations: ADHD, attention deficit hyperactivity disorder; L, left; MT, mean thickness; R, right; SD, standard deviation (variability of thicknesses).
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youngest study participants. As such, the rate at which
FreeSurfer fails to extract measurements from clinical
MRI examinations increases substantially for participants
aged 0 to 8 months, and the reliability of the results
produced by FreeSurfer on participants from this age
range is uncertain. FreeSurfer’s reliability was assessed
as reasonable for participants 8 months old and later
(considering this is beyond the validated age range for
the technology), at which point myelination contrast
patterns have inverted so as to match the general pattern
exhibited through the rest of life (with grey contrast
located on the brain’s periphery and white contrast
occupying central regions). Research towards overcoming
FreeSurfer’s reliability in very young populations is
ongoing (de Macedo Rodrigues et al., 2015; Zollei et al.,
2017), and developments will be incorporated into
future work.

Supporting information contain additional discussion.
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